Regular Expressions and DFAs

See section 3.2 of the text

We have already seen the language of Regular Expressions.

- 1. The language represented by ε is $\{\varepsilon\}$; the language represented by ϕ is ϕ ; any letter a in Σ represents the language $\{a\}$
- 2. If E is a regular expression then so is (E) and it represents the same language as E.
- 3. If expressions E and F represent languages \mathcal{L}_1 and \mathcal{L}_2 then expression E+F represents $\mathcal{L}_1 \cup \mathcal{L}_2$.
- 4. If expressions E and F represent languages \mathcal{L}_1 and \mathcal{L}_2 then expression EF represents the language of strings formed by concatenating a string from \mathcal{L}_2 onto the end of a string from \mathcal{L}_1 .
- 5. If expression E represents language \mathcal{L} then expression E^* represents the language of strings formed by concatenating 0 or more strings from \mathcal{L} together.
- 6. If expression E represents language \mathcal{L} then expression E⁺ represents the language of strings formed by concatenating 1 or more strings from \mathcal{L} together. E⁺=EE^{*}

Note that our definition of the language represented by regular expressions is recursive.

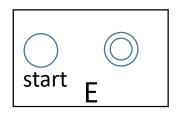
Theorem: If E is a regular expression then there is a DFA that accepts the language represented by E.

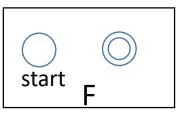
Proof. Structural induction!!

Here are the base cases:

For any a in
$$\Sigma$$
: $S \xrightarrow{a} T$

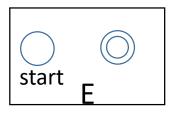
For the inductive cases, suppose E and F are regular expressions whose languages are accepted by the ϵ -NFAs

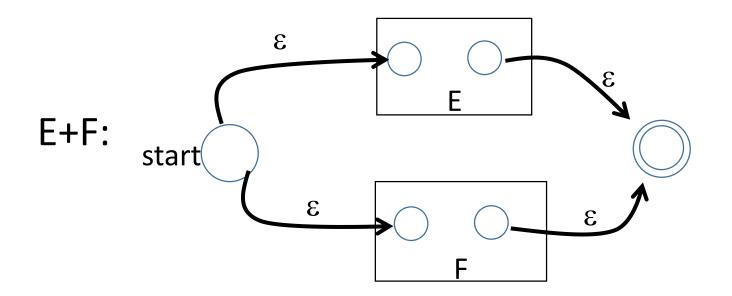


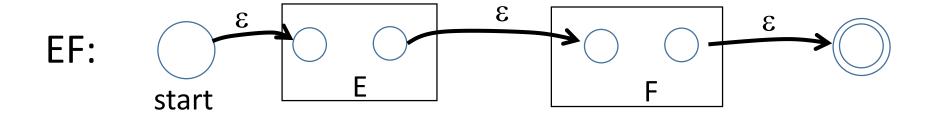


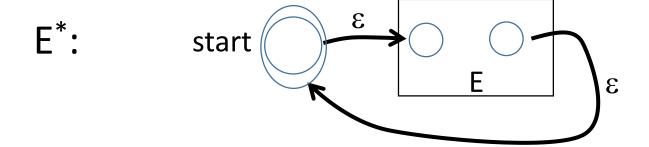
Since these are ϵ -NFAs we can assume there is only one final state i each automaton and there are no transitions out of it. Here are automata for the expressions we can build from E and F:

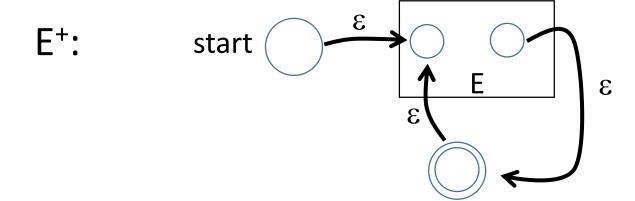
(E):



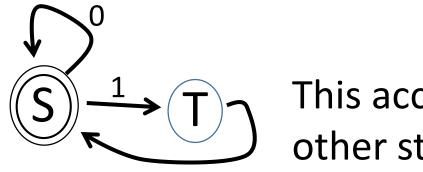






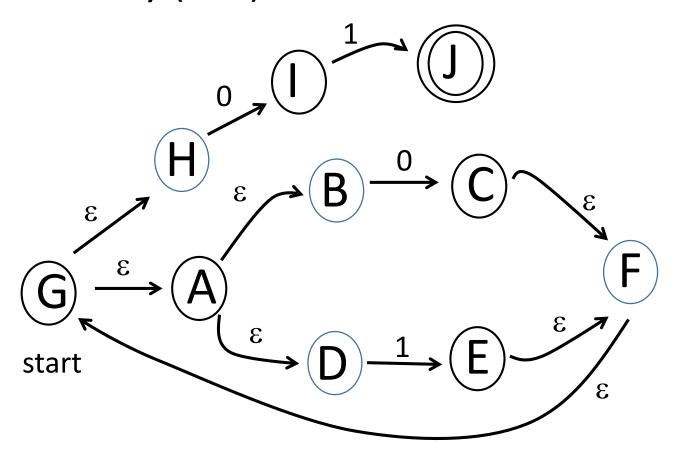


For the E* automaton note that we need a new start state; it isn't enough to just make the start state final:

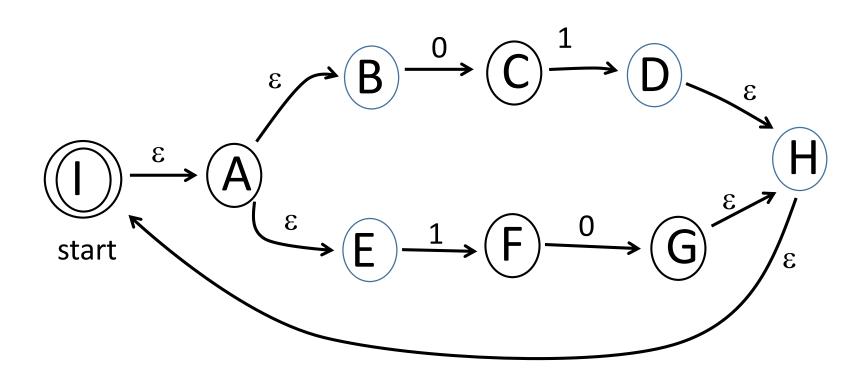


This accepts 000 and many other strings not in $(0^*1)^*$

Example: Find a finite automaton that accepts the language represented by $(0+1)^*01$



Example: Find a finite automaton that accepts the language represented by $(01+10)^*$



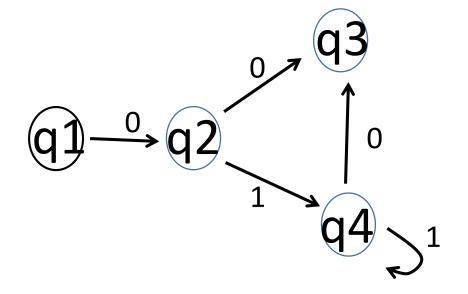
Theorem: Any language accepted by a DFA is also denoted by a regular expression.

Proof: This is more difficult because we don't have a recursive definition of a DFA for induction. We need to start with an arbitrary DFA and construct a regular expression for it.

Setup:

- 1. Number the states of the DFA q_1 , q_2 , ... q_n where q_1 is the start state. Note that we start indexing at 1, not 0.
- 2. Define R_{ij}^k to be the set of all strings that take the automaton from state q_i to state q_j without passing through any states numbered higher than k (where "passing through" means first entering, then leaving).

For example, consider:



Here
$$R_{13}^2 = \{00\}$$

 $R_{12}^0 = \{0\}$
 $R_{13}^4 = \{00, 010, 0110, ...\} = 01^*0$

Note that if the automaton has n states then $\bigcup_{q_i \in F} R_{1j}^n$ is the set of strings accepted by the automaton. We will use recursion on k to show that each of the R_{ij}^k sets is denoted by a regular expression.

For the base case, k=0. If $i \neq j$ then R_{ij}^0 is empty if there is no transition from q_i to q_j ; if there is such a transition then $R_{ij}^0 = \{a | \delta(q_i, a) = q_j\}$ If i and j are equal $R_{ii}^0 = \{a | \delta(q_i, a) = q_i\} \cup \{\epsilon\}$ In all of these cases R_{ij}^0 is finite and so is represented by a regular expression.

For the inductive case, note that for any k > 0

$$R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$$

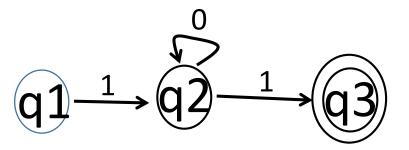
$$\text{don't pass thru } q_k \text{ trip to trips to } q_k \text{ to } q_j \text{ state } k$$

This means we can represent R_{ij}^k by the regular expression

$$r_{ij}^{k} = r_{ij}^{k-1} + r_{ik}^{k-1} (r_{kk}^{k-1})^{*} r_{kj}^{k-1}$$

Finally, $r = \sum_{q_j \in F} r_{1j}^n$ is a regular expression that denotes the language accepted by the automaton.

Example:



$$r_{ij}^{1} = r_{ij}^{0} + r_{i1}^{0} (r_{11}^{0})^{*} r_{1j}^{0}$$

$$r_{ij}^{2} = r_{ij}^{1} + r_{i2}^{1} (r_{22}^{1})^{*} r_{2j}^{1}$$

	k=0	k=1	k=2
r_{11}^k	3	3	3
r_{12}^k	1	1	$1+1(0+\epsilon)*(0+\epsilon)=10*$
r_{13}^{k}	ф	ф	1(0+ε)*1=10*1
r_{21}^k	ф	ф	ф
r_{22}^k	3+0	3+0	*0=(3+0)*(3+0)(3+0)+(3+0)
r_{23}^k	1	1	$1+(0+\epsilon)(0+\epsilon)*1=0*1$
r_{31}^k	ф	ф	ф
r_{32}^k	ф	ф	ф
r^k_{33}	3	3	3

Finally, we are only interested in r_{13}^3 .

$$r_{13}^3 = r_{13}^2 + r_{13}^2 (r_{33}^2)^* r_{33}^2$$

= 10*1+(10*1)\varepsilon^*\varepsilon
= 10*1